
Computer Graphics using Open GL,

3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 5.3-5

Transformations of
Objects

S. M. Lea

University of North Carolina at Greensboro

© 2007, Prentice Hall

3D Affine Transformations

• Again we use coordinate frames, and

suppose that we have an origin O and

three mutually perpendicular axes in the

directions i, j, and k (see Figure 5.8). Point

P in this frame is given by P = O + Pxi + Pyj

+ Pzk, and vector V by Vxi + Vyj + Vzk.













































0

,

1

z

y

x

z

y

x

V

V

V

V
P

P

P

P

3-D Affine Transformations

• The matrix representing a transformation

is now 4 x 4, with Q = M P as before.

• The fourth row of the matrix is a string of

zeroes followed a lone one.























1000

34333231

24232221

14131211

mmmm

mmmm

mmmm

M

Translation and Scaling

• Translation and scaling transformation

matrices are given below. The values Sx,

Sy, and Sz cause scaling about the origin

of the corresponding coordinates.













































1000

000

000

000

,

1000

100

010

001

z

y

x

z

y

x

s

s

s

S
t

t

t

T

Shear

• The shear matrix is given below.

– a: y along z; b: z along x; c: x along y; d: z

along y; e: x along z; f: y along z

• Usually only one of {a,…,f} is non-zero.























1000

01

01

01

fe

dc

ba

H

Rotations

• Rotations are more complicated. We start

by defining a roll (rotation counter-

clockwise around an axis looking toward

the origin):

Rotations (2)

• z-roll: the x-axis rotates to the y-axis.

• x-roll: the y-axis rotates to the z-axis.

• y-roll: the z-axis rotates to the x-axis.



















 

















































1000

0100

00cossin

00sincos

,

1000

0cos0sin

0010

0sin0cos

,

1000

0cossin0

0sincos0

0001













z

yx

R

RR

Rotations (3)

• Note that 12 of the terms in each matrix are the
zeros and ones of the identity matrix.

• They occur in the row and column that
correspond to the axis about which the rotation
is being made (e.g., the first row and column for
an x-roll).

• They guarantee that the corresponding
coordinate of the point being transformed will not
be altered.

• The cos and sin terms always appear in a
rectangular pattern in the other rows and
columns.

Example

• A barn in its original orientation, and after

a -70° x-roll, a 30° y-roll, and a -90° z-roll.

a). the barn b). -700 x-roll

c). 300 y-roll d). -900 z-roll

Composing 3D Affine

Transformations

• 3D affine transformations can be composed, and
the result is another 3D affine transformation.

• The matrix of the overall transformation is the
product of the individual matrices M1 and M2 that
perform the two transformations, with M2 pre-
multiplying M1: M = M2M1

• Any number of affine transformations can be
composed in this way, and a single matrix
results that represents the overall
transformation.

Example

• A barn is first

transformed using

some M1, and the

transformed barn is

again transformed

using M2. The result is

the same as the barn

transformed once

using M2M1.

Building Rotations

• All 2D rotations are Rz. Two rotations combine to

make a rotation given by the sum of the rotation

angles, and the matrices commute.

• In 3D the situation is much more complicated,

because rotations can be about different axes.

• The order in which two rotations about different

axes are performed does matter: 3D rotation

matrices do not commute.

Building Rotations (2)

• We build a rotation in 3D by composing
three elementary rotations: an x-roll
followed by a y-roll, and then a z-roll. The
overall rotation is given by M = Rz(β3)Ry(
β2)Rx(β1).

• In this context the angles β1, β2, and β3 are
often called Euler angles.

Building Rotations (3)

• Euler’s Theorem: Any rotation (or sequence
of rotations) about a point is equivalent to a
single rotation about some axis through that
point.

• Any 3D rotation around an axis (passing through
the origin) can be obtained from the product of
five matrices for the appropriate choice of Euler
angles; we shall see a method to construct the
matrices.

• This implies that three values are required (and
only three) to completely specify a rotation!

Rotating about an Arbitrary Axis

• We wish to rotate
around axis u to make
P coincide with Q.

• u can have any
direction; it appears
difficult to find a matrix
that represents such a
rotation.

• But it can be found in
two ways, a classic way
and a constructive way.

x y

z

u

P



Q





Rotating about an Arbitrary Axis (2)

• The classic way. Decompose the required

rotation into a sequence of known steps:

– Perform two rotations so that u becomes aligned with

the z-axis.

– Do a z-roll through angle β.

– Undo the two alignment rotations to restore u to its

original direction.

• Ru(β) = Rz(-θ) Ry(-Φ) Rz(β) Ry(Φ) Rz(θ) is the

desired rotation.

Rotating about an Arbitrary Axis (3)

• The constructive way. Using some vector
tools we can obtain a more revealing
expression for the matrix Ru(b).

• We wish to express the operation of
rotating point P through angle b into point
Q.

• The method, given in Case Study 5.5,
effectively establishes a 2D coordinate
system in the plane of rotation as shown.

Rotating about an Arbitrary Axis (4)

• This defines two orthogonal vectors a and b

lying in the plane, and as shown in Figure 5.25b

point Q is expressed as a linear combination of

them. The expression for Q involves dot

products and cross products of various

ingredients in the problem.

• But because each of the terms is linear in the

coordinates of P, it can be rewritten as P times a

matrix.

Rotating about an Arbitrary Axis (5)

Rotating about an Arbitrary Axis (6)

• c = cos(β), s = sin(β), and ux, uy, uz are the

components of u.

• Then





























1000

0)1()1()1(

0)1()1()1(

0)1()1()1(

)(
2

2

2

zxzyyzx

xyzyzyx

yxzzxyx

u
uccsuuucsuuuc

suuucuccsuuuc

suuucsuuucucc

R 

Rotating about an Arbitrary Axis (6)

• Open-GL provides a rotation about an

arbitrary axis:

glRotated (beta, ux, uy, uz);

• beta is the angle of rotation.

• ux, uy, uz are the components of a vector

u normal to the plane containing P and Q.

Summary of Properties of 3D Affine

Transformations

• Affine transformations preserve affine
combinations of points.

• Affine transformations preserve lines
and planes.

• Parallelism of lines and planes is
preserved.

• The columns of the matrix reveal the
transformed coordinate frame.

• Relative ratios are preserved.

Summary of Properties of 3D Affine

Transformations (2)

• The effect of transformations on the volumes

of objects. If 3D object D has volume V, then

its image T(D) has volume |det M | V, where |det

M| is the absolute value of the determinant of M.

• Every affine transformation is composed of

elementary operations. A 3D affine

transformation may be decomposed into a

composition of elementary transformations. See

Case Study 5.3.

Transforming Coordinate Systems

• We have a 2D
coordinate frame #1,
with origin O and
axes i and j.

• We have an affine
transformation T(.)
with matrix M, where
T(.) transforms
coordinate frame #1
into coordinate
frame #2, with new
origin O’ = T(O), and
new axes i’ = T(i)
and j’ = T(j).

Transforming Coordinate Systems

(2)

• Now let P be a point with representation

(c, d, 1)T in the new system #2.

• What are the values of a and b in its

representation (a, b, 1)T in the original

system #1?

• The answer: simply premultiply (c, d, 1)T

by M:

(a, b, 1)T = M (c, d, 1)T

Transforming Coordinate Systems

(3)

• We have the following theorem:

• Suppose coordinate system #2 is formed

from coordinate system #1 by the affine

transformation M. Further suppose that

point P = (Px, Py, Pz,1) are the coordinates

of a point P expressed in system #2. Then

the coordinates of P expressed in system

#1 are MP.

Successive Transformations

• Now consider forming a transformation by
making two successive changes of the
coordinate system. What is the overall
effect?

• System #1 is converted to system #2 by
transformation T1(.), and system #2 is then
transformed to system #3 by
transformation T2(.). Note that system #3
is transformed relative to #2.

Successive Transformations (2)

• Point P has

representation (e,

f,1)T with respect to

system #3. What are

its coordinates (a,

b,1)T with respect to

the original system

#1?

Successive Transformations (3)

• To answer this, collect the effects of each
transformation: In terms of system #2 the point P
has coordinates (c, d, 1)T = M2(e, f, 1)T. And in
terms of system #1 the point (c, d, 1)T has
coordinates (a, b, 1)T = M1(c, d, 1)T. So
(a, b, 1)T = M1(d, c, 1)T = M1M2(e, f, 1)T

• The essential point is that when determining the
desired coordinates (a, b, 1)T from (e, f, 1)T we
first apply M2 and then M1, just the opposite
order as when applying transformations to
points.

Successive Transformations (4)

• To transform points. To apply a sequence of
transformations T1(), T2(), T3() (in that order) to a
point P, form the matrix M = M3 x M2 x M1.

• Then P is transformed to MP; pre-multiply by Mi.

• To transform the coordinate system. To apply
a sequence of transformations T1(), T2(), T3() (in
that order) to the coordinate system, form the
matrix M = M1 x M2 x M3.

• Then P in the transformed system has
coordinates MP in the original system. To
compose each additional transformation Mi you
must post-multiply by Mi.

Open-GL Transformations

• Open-GL actually transforms coordinate

systems, so in your programs you will

have to apply the transformations in

reverse order.

• E.g., if you want to translate the 3 vertices

of a triangle and then rotate it, your

program will have to do rotate and then

translate.

Using Affine Transformations in

Open-GL

• glScaled (sx, sy, sz); // 2-d: sz = 1.0

• glTranslated (tx, ty, tz); //2-d: tz = 0.0

• glRotated (angle, ux, uy, uz); // 2-d: ux = uy =
0.0; uz = 1.0

• The sequence of commands is
– glLoadIdentity();

– glMatrixMode (GL_MODELVIEW);

– // transformations 1, 2, 3, (in reverse order)

• This method makes Open-GL do the work of
transforming for you.

Example

• We have version 1 of

the house defined

(vertices set), but

what we really want to

draw is version 2.

• We could write

routines to transform

the coordinates – this

is the hard way.

• The easy way lets GL

do the transforming.

• We cause the desired transformation to be
applied automatically to each vertex. Just as we
know the window to viewport mapping is quietly
applied to each vertex as part of the graphics
pipeline, we can have an additional
transformation be applied as well.

• It is often called the current transformation,
CT. We enhance moveTo() and lineTo() so that
they first apply this transformation to the
argument vertex, and then apply the window to
viewport mapping.

Example: the Easy Way (2)

Example (3)

• When glVertex2d()is called with argument V, the vertex V

is first transformed by the CT to form point Q.

• Q is then passed through the window to viewport

mapping to form point S in the screen window.

Example (4)

• How do we extend moveTo() and lineTo() so

they carry out this additional mapping?

• The transform is done automatically by OpenGL!

OpenGL maintains a so-called modelview

matrix, and every vertex that is passed down

the graphics pipeline is multiplied by this

modelview matrix.

• We need only set up the modelview matrix once

to embody the desired transformation.

Example (5)

• The principal routines for altering the modelview
matrix are glRotated(), glScaled(), and
glTranslated().

• These don’t set the CT directly; instead each
one postmultiplies the CT (the modelview matrix)
by a particular matrix, say M, and puts the result
back into the CT.

• That is, each of these routines creates a matrix
M as required for the new transformation, and
performs: CT = CT *M.

Example (6)

• glScaled (sx, sy, sz); // 2-d: sz = 1.0

• glTranslated (tx, ty, tz); //2-d: tz = 0.0

• glRotated (angle, ux, uy, uz); // 2-d: ux =

uy = 0.0; uz = 1.0

• This method makes Open-GL do the work

of transforming for you.

Example (7)

• Of course, we have to start with some

MODELVIEW matrix:

• The sequence of commands is

– glMatrixMode (GL_MODELVIEW);

– glLoadIdentity();

– // transformations 1, 2, 3, (in reverse order)

• Wrapper code for routines to manipulate

the CT is in Figure 5.33.

Example (8)

• Code to draw house #2: note translate is done
before rotate (reverse order).

• setWindow(...);

• setViewport(..); // set window to viewport
// mapping

• initCT(); // get started with identity
// transformation

• translate2D(32, 25); // CT includes translation

• rotate2D(-30.0); // CT includes translation and
// rotation

• house(); // draw the transformed house

Example 2: Star

• A star made of “interlocking” stripes: starMotif() draws a
part of the star, the polygon shown in part b. (Help on
finding polygon’s vertices in Case Study 5.1.)

• To draw the whole star we draw the motif five times,
each time rotating the motif through an additional 72°.

Example 3: Snowflake

• The motif and the figure are shown below.

glScaled() is used to reflect the motif to get

a complete branch and then to restore the

original axis. Rotate by 60o between

branches. a).
b).

30 o line

Example 4: Dino Patterns

• The dinosaurs are distributed around a

circle in both versions. Left: each dinosaur

is rotated so that its feet point toward the

origin; right: all the dinosaurs are upright.

Example 4 (2)

• drawDino() draws an upright dinosaur centered
at the origin.

• In a) the coordinate system for each motif is
rotated about the origin through a suitable angle,
and then translated along its y-axis by H units.

• Note that the CT is reinitialized each time
through the loop so that the transformations
don’t accumulate.

• An easy way to keep the motifs upright (as in
part b) is to pre-rotate each motif before
translating it.

Affine Transformations Stack

• It is also possible to push/pop the current

transformation from a stack in OpenGL, using

the commands

glMatrixMode (GL_MODELVIEW);

glPushMatrix(); //or glPopMatrix();

Affine Transformations Stack (2)

• The implementation of pushCT() and popCT()

uses OpenGL routines glPushMatrix() and

glPopMatrix().

• Caution: Note that each routine must inform

OpenGL which matrix stack is being affected.

• In OpenGL, popping a stack that contains only

one matrix is an error; test the number of

matrices using OpenGL’s query function

glGet(G L_MODELVIEW_STACK_DEPTH).

Affine Transformations Stack (3)

pushCT(void)

{ glMatrixMode(GL_MODELVIEW);

glPushMatrix(); // push a copy of the top matrix

}

checkStack(void)

{ if (glGet (GL_MODELVIEW_STACK_DEPTH) ≤ 1))

// do something

else popCT();

}

popCT(void)

{ glMatrixMode(GL_MODELVIEW);

glPopMatrix(); // pop the top matrix from the stack

}

Example 5: Motif

• Tilings are based on the repetition of a

basic motif both horizontally and vertically.

• Consider tiling the window with some

motif, drawn centered in its own

coordinate system by routine motif().

• Copies of the motif are drawn L units apart

in the x-direction, and D units apart in the

y-direction, as shown in part b).

Example 5 (2)

• The motif is translated horizontally and

vertically to achieve the tiling.

