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3D Affine Transformations

• Again we use coordinate frames, and 

suppose that we have an origin O and 

three mutually perpendicular axes in the 

directions i, j, and k (see Figure 5.8). Point 

P in this frame is given by P = O + Pxi + Pyj

+ Pzk, and vector V by Vxi + Vyj + Vzk. 
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3-D Affine Transformations 

• The matrix representing a transformation 

is now 4 x 4, with Q = M P as before.

• The fourth row of the matrix is a string of 

zeroes followed a lone one. 
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Translation and Scaling

• Translation and scaling transformation 

matrices are given below. The values Sx, 

Sy, and Sz cause scaling about the origin 

of the corresponding coordinates. 
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Shear

• The shear matrix is given below. 

– a: y along z; b: z along x; c: x along y; d: z 

along y; e: x along z; f: y along z

• Usually only one of {a,…,f} is non-zero.
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Rotations

• Rotations are more complicated.  We start 

by defining a roll (rotation counter-

clockwise around an axis looking toward

the origin):



Rotations (2)

• z-roll: the x-axis rotates to the y-axis. 

• x-roll: the y-axis rotates to the z-axis. 

• y-roll: the z-axis rotates to the x-axis.
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Rotations (3)

• Note that 12 of the terms in each matrix are the 
zeros and ones of the identity matrix. 

• They occur in the row and column that 
correspond to the axis about which the rotation 
is being made (e.g., the first row and column for 
an x-roll). 

• They guarantee that the corresponding 
coordinate of the point being transformed will not 
be altered. 

• The cos and sin terms always appear in a 
rectangular pattern in the other rows and 
columns.



Example

• A barn in its original orientation, and after 

a -70° x-roll,  a 30° y-roll, and a -90° z-roll.

a). the barn b). -700 x-roll 

c). 300 y-roll d). -900 z-roll 



Composing 3D Affine 

Transformations

• 3D affine transformations can be composed, and 
the result is another 3D affine transformation. 

• The matrix of the overall transformation is the 
product of the individual matrices M1 and M2 that 
perform the two transformations, with M2 pre-
multiplying M1: M = M2M1

• Any number of affine transformations can be 
composed in this way, and a single matrix 
results that represents the overall 
transformation. 



Example

• A barn is first 

transformed using 

some M1, and the 

transformed barn is 

again transformed 

using M2. The result is 

the same as the barn 

transformed once 

using M2M1.



Building Rotations

• All 2D rotations are Rz. Two rotations combine to 

make a rotation given by the sum of the rotation 

angles, and the matrices commute. 

• In 3D the situation is much more complicated, 

because rotations can be about different axes. 

• The order in which two rotations about different 

axes are performed does matter: 3D rotation 

matrices do not commute. 



Building Rotations (2)

• We build a rotation in 3D by composing 
three elementary rotations: an x-roll 
followed by a y-roll, and then a z-roll. The 
overall rotation is given by M = Rz(β3)Ry( 
β2)Rx(β1).

• In this context the angles β1, β2, and β3 are 
often called Euler angles.



Building Rotations (3)

• Euler’s Theorem: Any rotation (or sequence 
of rotations) about a point is equivalent to a 
single rotation about some axis through that 
point.

• Any 3D rotation around an axis (passing through 
the origin) can be obtained from the product of 
five matrices for the appropriate choice of Euler 
angles; we shall see a method to construct the 
matrices.  

• This implies that three values are required (and 
only three) to completely specify a rotation!



Rotating about an Arbitrary Axis

• We wish to rotate 
around axis u to make 
P coincide with Q.

• u can have any 
direction; it appears 
difficult to find a matrix 
that represents such a 
rotation. 

• But it can be found in 
two ways, a classic way 
and a constructive way.
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Rotating about an Arbitrary Axis (2)

• The classic way. Decompose the required 

rotation into a sequence of known steps:

– Perform two rotations so that u becomes aligned with 

the z-axis. 

– Do a z-roll through angle β. 

– Undo the two alignment rotations to restore u to its 

original direction.

• Ru(β) = Rz( -θ) Ry( -Φ) Rz(β) Ry(Φ) Rz(θ) is the 

desired rotation.



Rotating about an Arbitrary Axis (3)

• The constructive way. Using some vector 
tools we can obtain a more revealing 
expression for the matrix Ru(b).

• We wish to express the operation of 
rotating point P through angle b into point
Q.  

• The method, given in Case Study 5.5, 
effectively establishes a 2D coordinate 
system in the plane of rotation as shown. 



Rotating about an Arbitrary Axis (4)

• This defines two orthogonal vectors a and b 

lying in the plane, and as shown in Figure 5.25b 

point Q is expressed as a linear combination of 

them. The expression for Q involves dot 

products and cross products of various 

ingredients in the problem. 

• But because each of the terms is linear in the 

coordinates of P, it can be rewritten as P times a 

matrix.



Rotating about an Arbitrary Axis (5)



Rotating about an Arbitrary Axis (6)

• c = cos(β), s = sin(β), and ux, uy, uz are the 

components of u.

• Then 
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Rotating about an Arbitrary Axis (6)

• Open-GL provides a rotation about an 

arbitrary axis:

glRotated (beta, ux, uy, uz);

• beta is the angle of rotation.

• ux, uy, uz are the components of a vector 

u normal to the plane containing P and Q.



Summary of Properties of 3D Affine 

Transformations

• Affine transformations preserve affine 
combinations of points. 

• Affine transformations preserve lines 
and planes.

• Parallelism of lines and planes is 
preserved. 

• The columns of the matrix reveal the 
transformed coordinate frame.

• Relative ratios are preserved.



Summary of Properties of 3D Affine 

Transformations (2)

• The effect of transformations on the volumes 

of objects. If 3D object D has volume V, then 

its image T(D) has volume |det M | V, where |det

M| is the absolute value of the determinant of M.

• Every affine transformation is composed of 

elementary operations. A 3D affine 

transformation may be decomposed into a 

composition of elementary transformations. See  

Case Study 5.3.



Transforming Coordinate Systems 

• We have a 2D 
coordinate frame #1, 
with origin O and 
axes  i and j.  

• We have an affine 
transformation T(.) 
with matrix M, where 
T(.) transforms 
coordinate frame #1 
into coordinate 
frame #2, with new 
origin O’ = T(O), and 
new axes i’ = T(i) 
and j’ = T(j).



Transforming Coordinate Systems 

(2)

• Now let P be a point with representation 

(c, d, 1)T in the new system #2. 

• What are the values of a and b in its 

representation (a, b, 1)T in the original 

system #1? 

• The answer: simply premultiply (c, d, 1)T

by M: 

(a, b, 1)T = M (c, d, 1)T



Transforming Coordinate Systems 

(3)

• We have the following theorem: 

• Suppose coordinate system #2 is formed 

from coordinate system #1 by the affine 

transformation M. Further suppose that 

point P = (Px, Py, Pz,1) are the coordinates 

of a point P expressed in system #2. Then 

the coordinates of P expressed in system 

#1 are MP.



Successive Transformations

• Now consider forming a transformation by 
making two successive changes of the 
coordinate system. What is the overall 
effect? 

• System #1 is converted to system #2 by 
transformation T1(.), and system #2 is then 
transformed to system #3 by 
transformation T2(.). Note that system #3 
is transformed relative to #2.



Successive Transformations (2)

• Point P has 

representation (e, 

f,1)T with respect to 

system #3.  What are 

its coordinates (a, 

b,1)T with respect to 

the original system 

#1?



Successive Transformations (3)

• To answer this, collect the effects of each 
transformation: In terms of system #2 the point P
has coordinates (c, d, 1)T = M2(e, f, 1)T. And in 
terms of system #1 the point (c, d, 1)T has 
coordinates (a, b, 1)T = M1( c, d, 1)T.  So            
(a, b, 1)T = M1(d, c, 1)T = M1M2(e, f, 1)T

• The essential point is that when determining the 
desired coordinates (a, b, 1)T from (e, f, 1)T we 
first apply M2 and then M1, just the opposite
order as when applying transformations to 
points. 



Successive Transformations (4)

• To transform points. To apply a sequence of 
transformations T1(), T2(), T3() (in that order) to a 
point P, form the matrix  M = M3 x M2 x M1.

• Then P is transformed to MP; pre-multiply by Mi.   

• To transform the coordinate system. To apply 
a sequence of transformations T1(), T2(), T3() (in 
that order) to the coordinate system, form the 
matrix M = M1 x M2 x M3.

• Then P in the transformed system has 
coordinates MP in the original system. To 
compose each additional transformation Mi you 
must post-multiply by Mi.



Open-GL Transformations

• Open-GL actually transforms coordinate 

systems, so in your programs you will 

have to apply the transformations in 

reverse order.

• E.g., if you want to translate the 3 vertices 

of a triangle and then rotate it, your 

program will have to do rotate and then 

translate. 



Using Affine Transformations in 

Open-GL

• glScaled (sx, sy, sz); // 2-d: sz = 1.0

• glTranslated (tx, ty, tz); //2-d: tz = 0.0

• glRotated (angle, ux, uy, uz); // 2-d: ux = uy = 
0.0; uz = 1.0

• The sequence of commands is
– glLoadIdentity();

– glMatrixMode (GL_MODELVIEW);

– // transformations 1, 2, 3, .... (in reverse order)

• This method makes Open-GL do the work of 
transforming for you.



Example

• We have version 1 of 

the house defined 

(vertices set), but 

what we really want to 

draw is version 2.

• We could write 

routines to transform 

the coordinates – this 

is the hard way.

• The easy way lets GL 

do the transforming.



• We cause the desired transformation to be 
applied automatically to each vertex. Just as we 
know the window to viewport mapping is quietly 
applied to each vertex as part of the graphics 
pipeline, we can have an additional 
transformation be applied as well. 

• It is often called the current transformation,
CT. We enhance moveTo() and lineTo() so that 
they first apply this transformation to the 
argument vertex, and then apply the window to 
viewport mapping. 

Example: the Easy Way (2)



Example (3)

• When glVertex2d()is called with argument V, the vertex V

is first transformed by the CT to form point Q. 

• Q is then passed through the window to viewport 

mapping to form point S in the screen window.



Example (4)

• How do we extend moveTo() and lineTo() so 

they carry out this additional mapping?

• The transform is done automatically by OpenGL! 

OpenGL maintains a so-called modelview 

matrix, and every vertex that is passed down 

the graphics pipeline is multiplied by this 

modelview matrix. 

• We need only set up the modelview matrix once 

to embody the desired transformation. 



Example (5)

• The principal routines for altering the modelview 
matrix are glRotated(), glScaled(), and 
glTranslated().

• These don’t set the CT directly; instead each 
one postmultiplies the CT (the modelview matrix) 
by a particular matrix, say M, and puts the result 
back into the CT. 

• That is, each of these routines creates a matrix 
M as required for the new transformation, and 
performs: CT = CT *M.



Example (6)

• glScaled (sx, sy, sz); // 2-d: sz = 1.0

• glTranslated (tx, ty, tz); //2-d: tz = 0.0

• glRotated (angle, ux, uy, uz); // 2-d: ux = 

uy = 0.0; uz = 1.0

• This method makes Open-GL do the work 

of transforming for you.



Example (7)

• Of course, we have to start with some 

MODELVIEW matrix: 

• The sequence of commands is

– glMatrixMode (GL_MODELVIEW);

– glLoadIdentity();

– // transformations 1, 2, 3, .... (in reverse order)

• Wrapper code for routines to manipulate 

the CT is in Figure 5.33.



Example (8)

• Code to draw house #2: note translate is done 
before rotate (reverse order).

• setWindow(...);  

• setViewport(..);  // set window to viewport 
// mapping

• initCT(); // get started with identity 
// transformation

• translate2D(32, 25); // CT includes translation

• rotate2D(-30.0);     // CT includes translation and 
// rotation

• house();       // draw the transformed house



Example 2: Star

• A star made of “interlocking” stripes: starMotif() draws a 
part of the star, the polygon shown in part b. (Help on 
finding polygon’s vertices in Case Study 5.1.) 

• To draw the whole star we draw the motif five times, 
each time rotating the motif through an additional 72°.



Example 3: Snowflake

• The motif and the figure are shown below.  

glScaled() is used to reflect the motif to get 

a complete branch and then to restore the 

original axis.  Rotate by 60o between 

branches. a).
b).

30 o line



Example 4: Dino Patterns

• The dinosaurs are distributed around a 

circle in both versions.  Left: each dinosaur 

is rotated so that its feet point toward the 

origin; right: all the dinosaurs are upright. 



Example 4 (2)

• drawDino() draws an upright dinosaur centered 
at the origin. 

• In a) the coordinate system for each motif is 
rotated about the origin through a suitable angle, 
and then translated along its y-axis by H units. 

• Note that the CT is reinitialized each time 
through the loop so that the transformations 
don’t accumulate. 

• An easy way to keep the motifs upright (as in 
part b) is to pre-rotate each motif before 
translating it. 



Affine Transformations Stack

• It is also possible to push/pop the current 

transformation from a stack in OpenGL, using 

the commands 

glMatrixMode (GL_MODELVIEW); 

glPushMatrix(); //or glPopMatrix();



Affine Transformations Stack (2)

• The implementation of pushCT() and popCT()

uses OpenGL routines glPushMatrix() and 

glPopMatrix().

• Caution: Note that each routine must inform 

OpenGL which matrix stack is being affected.  

• In OpenGL, popping a stack that contains only 

one matrix is an error; test the number of 

matrices using OpenGL’s query function  

glGet(G L_MODELVIEW_STACK_DEPTH).



Affine Transformations Stack (3)

pushCT(void)

{ glMatrixMode(GL_MODELVIEW);

glPushMatrix();           // push a copy of the top matrix 

}

checkStack(void)

{ if (glGet (GL_MODELVIEW_STACK_DEPTH) ≤ 1) )

// do something

else  popCT();

}

popCT(void)

{ glMatrixMode(GL_MODELVIEW);

glPopMatrix();            // pop the top matrix from the stack

}



Example 5: Motif

• Tilings are based on the repetition of a 

basic motif both horizontally and vertically.

• Consider tiling the window with some 

motif, drawn centered in its own 

coordinate system by routine motif().

• Copies of the motif are drawn L units apart 

in the x-direction, and D units apart in the 

y-direction, as shown in part b).



Example 5 (2)

• The motif is translated horizontally and 

vertically to achieve the tiling.


